some test data
This commit is contained in:
File diff suppressed because it is too large
Load Diff
1777
FeatureExtraction/ExtractionFrameworkThroughputTest.ipynb
Normal file
1777
FeatureExtraction/ExtractionFrameworkThroughputTest.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
9269
FeatureExtraction/TestAudioFeatureExtractionPANNS.ipynb
Normal file
9269
FeatureExtraction/TestAudioFeatureExtractionPANNS.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
80
FeatureExtraction/audiopreprocessing.py
Normal file
80
FeatureExtraction/audiopreprocessing.py
Normal file
@@ -0,0 +1,80 @@
|
||||
import librosa
|
||||
import pickle
|
||||
import os
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
|
||||
DEBUG=True
|
||||
|
||||
def resample_load(input_path : Path, target_sr : int = 16000, mono_audio : bool = False) -> np.ndarray: # AI
|
||||
"""Resample audio to target sample rate and save to output directory"""
|
||||
# Load audio file with original sample rate
|
||||
if DEBUG: print("[resample_load] Loading audio", input_path)
|
||||
audio, orig_sr = librosa.load(input_path, sr=None, mono=mono_audio)
|
||||
|
||||
# Resample if necessary
|
||||
if orig_sr != target_sr:
|
||||
if DEBUG: print("[resample_load] Resampling to", target_sr)
|
||||
audio = librosa.resample(audio, orig_sr=orig_sr, target_sr=target_sr)
|
||||
|
||||
return audio
|
||||
|
||||
def chunk_audio(audio : np.ndarray, sr: int, chunk_length: float = 10.0, overlap: float = 2.0) -> tuple[list[np.ndarray], list[float], int]: # AI
|
||||
"""
|
||||
Chunks audio file into overlapping segments. Only pass in mono audio here.
|
||||
|
||||
Args:
|
||||
audio_file: Loaded audio ndarray
|
||||
sr: Sample rate for the given audio file
|
||||
chunk_length: Length of each chunk in seconds
|
||||
overlap: Overlap between chunks in seconds
|
||||
|
||||
Returns:
|
||||
List of audio chunks, list of chunk positions, and given sample rate
|
||||
"""
|
||||
if DEBUG: print("[chunk_audio] Chunking audio")
|
||||
# Calculate chunk size and hop length in samples
|
||||
chunk_size = int(chunk_length * sr)
|
||||
hop_length = int((chunk_length - overlap) * sr)
|
||||
|
||||
# Generate chunks
|
||||
chunks = []
|
||||
positions = []
|
||||
k = 0
|
||||
for i in range(0, len(audio) - chunk_size + 1, hop_length):
|
||||
chunk = audio[i:i + chunk_size]
|
||||
chunks.append(chunk)
|
||||
positions.append(i / sr)
|
||||
k += 1
|
||||
if DEBUG: print("[chunk_audio] Chunked", k, end="\r")
|
||||
if k == 0: # The full audio length is less than chunk_length
|
||||
chunks = [audio]
|
||||
positions = [0.0]
|
||||
|
||||
return chunks, positions, sr
|
||||
|
||||
def load_preprocessed_audio(
|
||||
path: Path,
|
||||
desired_sr: int,
|
||||
mono: bool = False,
|
||||
chunk_length: float = 15.0,
|
||||
overlap: float = 2.0) -> list[tuple[np.ndarray, float, int]]:
|
||||
|
||||
result = []
|
||||
# Load and resample audio
|
||||
audio = resample_load(path, desired_sr, mono) # Stereo 2D matrix, Mono 1D array
|
||||
if mono or (audio.ndim == 1):
|
||||
# Chunk audio: mono (or the audio file loaded in itself is mono)
|
||||
chunks, positions, _ = chunk_audio(audio, desired_sr, chunk_length, overlap)
|
||||
assert len(chunks) == len(positions)
|
||||
result.extend(zip(chunks, positions, [-1 for _ in range(len(chunks))]))
|
||||
# (ndarray_chunk1, pos1, -1): first audio chunk, position1, -1 (Mono channel indicator)
|
||||
else:
|
||||
# Chunk audio: stereo/multichannel
|
||||
for channel_id, channel_audio in enumerate(audio):
|
||||
chunks, positions, _ = chunk_audio(channel_audio, desired_sr, chunk_length, overlap)
|
||||
assert len(chunks) == len(positions)
|
||||
result.extend(zip(chunks, positions, [channel_id for _ in range(len(chunks))]))
|
||||
# (ndarray_chunk1, pos1, 0): first audio chunk, position1, 0 (channel 0)
|
||||
|
||||
return result
|
||||
@@ -1,9 +1,43 @@
|
||||
import platform
|
||||
import os
|
||||
import pickle
|
||||
import random
|
||||
import threading
|
||||
import time
|
||||
import concurrent.futures
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
import audiopreprocessing
|
||||
|
||||
DEBUG=True
|
||||
|
||||
def serialize_dict_obj(path : Path, object : dict) -> int:
|
||||
"""Serializes Python Dictionary object to a file via Pickle.
|
||||
|
||||
Args:
|
||||
path (Path): Path to store the file
|
||||
object (dict): Dictionary object to serialize
|
||||
Returns:
|
||||
int: size in bytes written
|
||||
"""
|
||||
# Horrible practice, horrible security, but it will work for now
|
||||
with path.open("wb") as fp:
|
||||
pickle.dump(object, fp)
|
||||
fp.seek(0, os.SEEK_END)
|
||||
size = fp.tell()
|
||||
return size
|
||||
|
||||
print("Reading local dataset directory structure...")
|
||||
|
||||
ASMRThreePath = Path("C:\\ASMRThree")
|
||||
ASMRTwoPath = Path("D:\\ASMRTwo")
|
||||
ASMROnePath = Path("E:\\ASMROne")
|
||||
|
||||
if (platform.system() == 'Linux'):
|
||||
ASMROnePath = Path('/mnt/Scratchpad/ASMROne')
|
||||
ASMRTwoPath = Path('/mnt/MyStuffz/ASMRTwo')
|
||||
ASMRThreePath = Path('/mnt/Windows11/ASMRThree')
|
||||
|
||||
size_one, size_two, size_three = 0, 0, 0
|
||||
files_one, files_two, files_three = [], [], []
|
||||
folders_one, folders_two, folders_three = [], [], []
|
||||
@@ -78,4 +112,161 @@ for file in file_list:
|
||||
fileext_stat[f_ext]['Count'] = 1
|
||||
fileext_stat[f_ext]['List'] = [file]
|
||||
fileext_stat[f_ext]['ExtensionMass'] = file.stat().st_size # The total sum of sizes of the same file extension
|
||||
fileext_stat[f_ext]['MediaType'] = fileExt2fileType[f_ext]
|
||||
fileext_stat[f_ext]['MediaType'] = fileExt2fileType[f_ext]
|
||||
|
||||
audio_paths = []
|
||||
for extension in fileext_stat: # I can't be bothered to convert this into a list compresion
|
||||
if fileext_stat[extension]['MediaType'] == "Audio":
|
||||
audio_paths += fileext_stat[extension]['List']
|
||||
|
||||
def random_audio_chunk(n : int, seed : int = 177013) -> list[Path]:
|
||||
"""Returns a random selection of audio files
|
||||
|
||||
Args:
|
||||
n (int): Amount of files to return
|
||||
seed (int, optional): Seed for RNG. Defaults to 177013.
|
||||
|
||||
Returns:
|
||||
list[Path]: List of randomly selected audio paths (using Path object)
|
||||
"""
|
||||
random.seed(seed)
|
||||
#return random.choices(audio_paths, k=n) # Contains repeated elements
|
||||
return random.sample(audio_paths, k=n)
|
||||
|
||||
class AudioFeatureExtractor():
|
||||
__audio_queue: list[ # List of ...
|
||||
tuple[ # Pair of chunked audio and its path
|
||||
list[tuple[np.ndarray, float, int]], # Chunked audio
|
||||
Path # Path to original audio
|
||||
]
|
||||
] # Listed of Chunked/Resampled audio
|
||||
__feeder_future: concurrent.futures.Future
|
||||
__extractor_future: concurrent.futures.Future
|
||||
__audio_paths_list: list[Path]
|
||||
__max_audio_in_queue: int
|
||||
__queue_lock: threading.Lock
|
||||
__desired_sr: int
|
||||
__mono: bool
|
||||
__chunk_length: float
|
||||
__overlap: float
|
||||
__features: dict[Path, list[tuple[np.ndarray, float, int]]]
|
||||
# { audioPath:
|
||||
# [(embedding, pos, channel)...]
|
||||
# }
|
||||
|
||||
def __embedding_inference(self, audio_ndarray: np.ndarray) -> np.ndarray:
|
||||
"""Uses embedding model to inference an audio. Returns embedding vectors.
|
||||
Function to be overrided. Returns np.zeros(32).
|
||||
|
||||
Args:
|
||||
audio_ndarray (np.ndarray):
|
||||
|
||||
Returns:
|
||||
np.ndarray: _description_
|
||||
"""
|
||||
return np.zeros(32)
|
||||
|
||||
def __embedding_extract(self, audio: tuple[np.ndarray, float, int]) -> tuple[np.ndarray, float, int, np.ndarray]:
|
||||
"""Receives a tuple of audio, position, and channel ID, then adding the embedding to the tuple
|
||||
|
||||
Args:
|
||||
audio (tuple[np.ndarray, float, int]): tuple of audio, position, channel id
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray, float, int, np.ndarray]: audio, position, channel id, embedding vector
|
||||
"""
|
||||
audio_chunk, pos, channel_id = audio
|
||||
return (audio_chunk, pos, channel_id, self.__embedding_inference(audio_chunk))
|
||||
|
||||
def __audio_queue_feeder(self): # TODO: Upgrade to multithreaded loader?
|
||||
"""Internal thread function. Preprocess and load the audio continuously to
|
||||
audio_queue until the end of the audio_paths_list
|
||||
"""
|
||||
while (self.__audio_paths_list): # While there are still Path elements in path list
|
||||
if (not (len(self.__audio_queue) < self.__max_audio_in_queue)):
|
||||
if DEBUG: print("Audio Queue Thread: Queue Full, feeder thread sleeping for 5 seconds")
|
||||
time.sleep(5)
|
||||
while(len(self.__audio_queue) < self.__max_audio_in_queue): # While the audio queue is not full
|
||||
new_audio_path = self.__audio_paths_list[0]
|
||||
new_audio = audiopreprocessing.load_preprocessed_audio(
|
||||
new_audio_path,
|
||||
self.__desired_sr,
|
||||
self.__mono,
|
||||
self.__chunk_length,
|
||||
self.__overlap
|
||||
)
|
||||
with self.__queue_lock:
|
||||
self.__audio_queue.append(
|
||||
(new_audio, new_audio_path)
|
||||
)
|
||||
pop_path = self.__audio_paths_list.pop(0)
|
||||
if DEBUG: print("Audio Queue Thread: Added new audio to queue", pop_path)
|
||||
if DEBUG: print("Audio Queue Thread: DONE. All audio files fed")
|
||||
|
||||
def __audio_queue_feature_extractor(self):
|
||||
"""Internal thread function. Get audio from audio queue. And extract embedding vector
|
||||
for all audio chunks. Stores the resulting embedding into self.__features.
|
||||
With Original Audio's Path as key, and list[tuple[np.ndarray, float, int]] (list of tuple of embedding vector, position, channel id)
|
||||
"""
|
||||
while (self.__audio_paths_list or self.__audio_queue): # While there are still audio to be processed
|
||||
if (self.__audio_queue): # If audio queue is not empty
|
||||
with self.__queue_lock:
|
||||
audio_to_process, audio_path = self.__audio_queue.pop(0) # Get audio from queue
|
||||
if DEBUG: print(f"Feature Extractor Thread: Extracting {len(audio_to_process)} features from audio", audio_path)
|
||||
for audio_chunk in audio_to_process:
|
||||
same_audio_chunk, timepos, channel_id, embedd_vect = self.__embedding_extract(audio_chunk)
|
||||
if (audio_path not in self.__features.keys()):
|
||||
#if DEBUG: print("Adding new vector to", audio_path.name)
|
||||
self.__features[audio_path] = [(embedd_vect, timepos, channel_id)]
|
||||
else:
|
||||
#if DEBUG: print("Adding vector to", audio_path.name)
|
||||
self.__features[audio_path].append(
|
||||
(embedd_vect, timepos, channel_id)
|
||||
)
|
||||
else:
|
||||
if DEBUG: print("Feature Extractor Thread: Queue Empty, extractor thread sleeping for 5 seconds") # If audio queue is empty, wait
|
||||
time.sleep(5)
|
||||
if DEBUG: print("Feature Extractor Thread: DONE. Extracted all features from all audio files")
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
audio_paths_list: list[Path],
|
||||
max_audio_in_queue: int,
|
||||
desired_sr: int,
|
||||
mono: bool,
|
||||
chunk_length: float = 15.0,
|
||||
overlap: float = 2.0
|
||||
):
|
||||
self.__audio_queue = []
|
||||
self.__audio_paths_list = audio_paths_list
|
||||
self.__max_audio_in_queue = max_audio_in_queue
|
||||
self.__queue_lock = threading.Lock()
|
||||
self.__desired_sr = desired_sr
|
||||
self.__mono = mono
|
||||
self.__chunk_length = chunk_length
|
||||
self.__overlap = overlap
|
||||
self.__features = {}
|
||||
|
||||
@property
|
||||
def features(self) -> dict[Path, list[tuple[np.ndarray, float, int]]]:
|
||||
return self.__features
|
||||
|
||||
def extract(self):
|
||||
print("Starting feature extraction for", len(self.__audio_paths_list), "file(s)")
|
||||
total_amount = len(self.__audio_paths_list)
|
||||
t_start = time.perf_counter()
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
|
||||
self.__feeder_future = executor.submit(self.__audio_queue_feeder)
|
||||
self.__extractor_future = executor.submit(self.__audio_queue_feature_extractor)
|
||||
while (self.__feeder_future.running() or self.__extractor_future.running()):
|
||||
print(f"Processed {len(self.__features)}/{total_amount} (L:{len(self.__audio_queue)}/W{len(self.__audio_paths_list)})", end="\r")
|
||||
time.sleep(1)
|
||||
|
||||
t_stop = time.perf_counter()
|
||||
print(f"Processed {len(self.__features)}/{total_amount} (L:{len(self.__audio_queue)}/W:{len(self.__audio_paths_list)} COMPLETE)")
|
||||
delta_t = t_stop - t_start
|
||||
total_features = sum( [len(self.__features[path]) for path in self.__features] )
|
||||
print()
|
||||
print("Extraction completed")
|
||||
print(f"Took {delta_t} seconds. Added {total_features} vectors/embeddings")
|
||||
|
||||
3
FeatureExtraction/test.py
Normal file
3
FeatureExtraction/test.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from dataset_files import AudioFeatureExtractor, random_audio_chunk
|
||||
afe = AudioFeatureExtractor(random_audio_chunk(32), 16, 32000, False)
|
||||
afe.extract()
|
||||
Reference in New Issue
Block a user