some test data

This commit is contained in:
2025-04-10 09:01:24 +02:00
parent a9d3d10da9
commit 6fc6df87b2
10 changed files with 25401 additions and 22798 deletions

View File

@@ -1,9 +1,43 @@
import platform
import os
import pickle
import random
import threading
import time
import concurrent.futures
import numpy as np
from pathlib import Path
import audiopreprocessing
DEBUG=True
def serialize_dict_obj(path : Path, object : dict) -> int:
"""Serializes Python Dictionary object to a file via Pickle.
Args:
path (Path): Path to store the file
object (dict): Dictionary object to serialize
Returns:
int: size in bytes written
"""
# Horrible practice, horrible security, but it will work for now
with path.open("wb") as fp:
pickle.dump(object, fp)
fp.seek(0, os.SEEK_END)
size = fp.tell()
return size
print("Reading local dataset directory structure...")
ASMRThreePath = Path("C:\\ASMRThree")
ASMRTwoPath = Path("D:\\ASMRTwo")
ASMROnePath = Path("E:\\ASMROne")
if (platform.system() == 'Linux'):
ASMROnePath = Path('/mnt/Scratchpad/ASMROne')
ASMRTwoPath = Path('/mnt/MyStuffz/ASMRTwo')
ASMRThreePath = Path('/mnt/Windows11/ASMRThree')
size_one, size_two, size_three = 0, 0, 0
files_one, files_two, files_three = [], [], []
folders_one, folders_two, folders_three = [], [], []
@@ -78,4 +112,161 @@ for file in file_list:
fileext_stat[f_ext]['Count'] = 1
fileext_stat[f_ext]['List'] = [file]
fileext_stat[f_ext]['ExtensionMass'] = file.stat().st_size # The total sum of sizes of the same file extension
fileext_stat[f_ext]['MediaType'] = fileExt2fileType[f_ext]
fileext_stat[f_ext]['MediaType'] = fileExt2fileType[f_ext]
audio_paths = []
for extension in fileext_stat: # I can't be bothered to convert this into a list compresion
if fileext_stat[extension]['MediaType'] == "Audio":
audio_paths += fileext_stat[extension]['List']
def random_audio_chunk(n : int, seed : int = 177013) -> list[Path]:
"""Returns a random selection of audio files
Args:
n (int): Amount of files to return
seed (int, optional): Seed for RNG. Defaults to 177013.
Returns:
list[Path]: List of randomly selected audio paths (using Path object)
"""
random.seed(seed)
#return random.choices(audio_paths, k=n) # Contains repeated elements
return random.sample(audio_paths, k=n)
class AudioFeatureExtractor():
__audio_queue: list[ # List of ...
tuple[ # Pair of chunked audio and its path
list[tuple[np.ndarray, float, int]], # Chunked audio
Path # Path to original audio
]
] # Listed of Chunked/Resampled audio
__feeder_future: concurrent.futures.Future
__extractor_future: concurrent.futures.Future
__audio_paths_list: list[Path]
__max_audio_in_queue: int
__queue_lock: threading.Lock
__desired_sr: int
__mono: bool
__chunk_length: float
__overlap: float
__features: dict[Path, list[tuple[np.ndarray, float, int]]]
# { audioPath:
# [(embedding, pos, channel)...]
# }
def __embedding_inference(self, audio_ndarray: np.ndarray) -> np.ndarray:
"""Uses embedding model to inference an audio. Returns embedding vectors.
Function to be overrided. Returns np.zeros(32).
Args:
audio_ndarray (np.ndarray):
Returns:
np.ndarray: _description_
"""
return np.zeros(32)
def __embedding_extract(self, audio: tuple[np.ndarray, float, int]) -> tuple[np.ndarray, float, int, np.ndarray]:
"""Receives a tuple of audio, position, and channel ID, then adding the embedding to the tuple
Args:
audio (tuple[np.ndarray, float, int]): tuple of audio, position, channel id
Returns:
tuple[np.ndarray, float, int, np.ndarray]: audio, position, channel id, embedding vector
"""
audio_chunk, pos, channel_id = audio
return (audio_chunk, pos, channel_id, self.__embedding_inference(audio_chunk))
def __audio_queue_feeder(self): # TODO: Upgrade to multithreaded loader?
"""Internal thread function. Preprocess and load the audio continuously to
audio_queue until the end of the audio_paths_list
"""
while (self.__audio_paths_list): # While there are still Path elements in path list
if (not (len(self.__audio_queue) < self.__max_audio_in_queue)):
if DEBUG: print("Audio Queue Thread: Queue Full, feeder thread sleeping for 5 seconds")
time.sleep(5)
while(len(self.__audio_queue) < self.__max_audio_in_queue): # While the audio queue is not full
new_audio_path = self.__audio_paths_list[0]
new_audio = audiopreprocessing.load_preprocessed_audio(
new_audio_path,
self.__desired_sr,
self.__mono,
self.__chunk_length,
self.__overlap
)
with self.__queue_lock:
self.__audio_queue.append(
(new_audio, new_audio_path)
)
pop_path = self.__audio_paths_list.pop(0)
if DEBUG: print("Audio Queue Thread: Added new audio to queue", pop_path)
if DEBUG: print("Audio Queue Thread: DONE. All audio files fed")
def __audio_queue_feature_extractor(self):
"""Internal thread function. Get audio from audio queue. And extract embedding vector
for all audio chunks. Stores the resulting embedding into self.__features.
With Original Audio's Path as key, and list[tuple[np.ndarray, float, int]] (list of tuple of embedding vector, position, channel id)
"""
while (self.__audio_paths_list or self.__audio_queue): # While there are still audio to be processed
if (self.__audio_queue): # If audio queue is not empty
with self.__queue_lock:
audio_to_process, audio_path = self.__audio_queue.pop(0) # Get audio from queue
if DEBUG: print(f"Feature Extractor Thread: Extracting {len(audio_to_process)} features from audio", audio_path)
for audio_chunk in audio_to_process:
same_audio_chunk, timepos, channel_id, embedd_vect = self.__embedding_extract(audio_chunk)
if (audio_path not in self.__features.keys()):
#if DEBUG: print("Adding new vector to", audio_path.name)
self.__features[audio_path] = [(embedd_vect, timepos, channel_id)]
else:
#if DEBUG: print("Adding vector to", audio_path.name)
self.__features[audio_path].append(
(embedd_vect, timepos, channel_id)
)
else:
if DEBUG: print("Feature Extractor Thread: Queue Empty, extractor thread sleeping for 5 seconds") # If audio queue is empty, wait
time.sleep(5)
if DEBUG: print("Feature Extractor Thread: DONE. Extracted all features from all audio files")
def __init__(
self,
audio_paths_list: list[Path],
max_audio_in_queue: int,
desired_sr: int,
mono: bool,
chunk_length: float = 15.0,
overlap: float = 2.0
):
self.__audio_queue = []
self.__audio_paths_list = audio_paths_list
self.__max_audio_in_queue = max_audio_in_queue
self.__queue_lock = threading.Lock()
self.__desired_sr = desired_sr
self.__mono = mono
self.__chunk_length = chunk_length
self.__overlap = overlap
self.__features = {}
@property
def features(self) -> dict[Path, list[tuple[np.ndarray, float, int]]]:
return self.__features
def extract(self):
print("Starting feature extraction for", len(self.__audio_paths_list), "file(s)")
total_amount = len(self.__audio_paths_list)
t_start = time.perf_counter()
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
self.__feeder_future = executor.submit(self.__audio_queue_feeder)
self.__extractor_future = executor.submit(self.__audio_queue_feature_extractor)
while (self.__feeder_future.running() or self.__extractor_future.running()):
print(f"Processed {len(self.__features)}/{total_amount} (L:{len(self.__audio_queue)}/W{len(self.__audio_paths_list)})", end="\r")
time.sleep(1)
t_stop = time.perf_counter()
print(f"Processed {len(self.__features)}/{total_amount} (L:{len(self.__audio_queue)}/W:{len(self.__audio_paths_list)} COMPLETE)")
delta_t = t_stop - t_start
total_features = sum( [len(self.__features[path]) for path in self.__features] )
print()
print("Extraction completed")
print(f"Took {delta_t} seconds. Added {total_features} vectors/embeddings")