processing framework

This commit is contained in:
2025-04-18 21:07:16 +02:00
parent 6fc6df87b2
commit b855b7e255
7 changed files with 8579 additions and 10682 deletions

View File

@@ -0,0 +1,193 @@
from dataset_files import MultiThreadedAudioFeatureExtractor
from pathlib import Path
from panns_inference import AudioTagging
import logging
import numpy as np
import queue
import concurrent.futures
import threading
import time
import audiopreprocessing
#import torch
#import gc
class mtafe_panns():
__audio_queue: queue.Queue[ # List of ...
tuple[ # Pair of chunked audio and its path
list[tuple[np.ndarray, float, int]], # Chunked audio
Path # Path to original audio
]
] # Listed of Chunked/Resampled audio
__audio_loader_threads: int # Amount of audio feeder threads
__feature_extractor_threads: int # Amount of feature extractor threads (if the method allows)
__audio_paths_list: queue.Queue[Path] # Path list to audio
__max_audio_in_queue: int # Maximum audio in queue
__desired_sr: int
__mono: bool
__chunk_length: float
__overlap: float
__features: dict[Path, list[tuple[np.ndarray, float, int]]] # This is a crime, I know
__features_lock: threading.Lock
__audio_loader_threadpool: list[concurrent.futures.Future]
__feature_extractor_threadpool: list[concurrent.futures.Future]
__at: AudioTagging
__batch_size: int
def __init__(self,
audio_paths: list[Path],
max_audio_in_queue: int = 16,
audio_feeder_threads: int = 8,
feature_extractor_threads: int = 8,
desired_sr: int = 32000,
force_mono: bool = False,
chunk_length: float = 15.0,
chunk_overlap: float = 2.0,
batch_size: int = 20
):
# Check if the paths passed in are all valid and add them to queue
self.__audio_paths_list = queue.Queue()
for p in audio_paths:
if not p.is_file():
raise Exception(f"Path '{p.absolute()}' is NOT a valid file!")
else:
self.__audio_paths_list.put(p)
#self.__audio_paths_list.task_done()
logging.info(f"[MTAFE] [Constructor] Queued {self.__audio_paths_list.qsize()} files")
# Set up private attributes
## Audio preprocessing parameters
self.__desired_sr = desired_sr
self.__mono = force_mono
self.__chunk_length = chunk_length
self.__overlap = chunk_overlap
## Extractor/Feeder settings
self.__max_audio_in_queue = max_audio_in_queue
self.__audio_loader_threads = audio_feeder_threads
self.__feature_extractor_threads = feature_extractor_threads
## Set up runtime conditions
self.__audio_queue = queue.Queue(maxsize=max_audio_in_queue)
self.__features = {}
self.__features_lock = threading.Lock()
self.__audio_loader_threadpool = []
self.__feature_extractor_threadpool = []
logging.info(f"[MTAFE] [Constructor] Extraction parameters: {desired_sr}Hz, Mono: {force_mono}, Divide into {chunk_length}s chunks with {chunk_overlap}s of overlap")
logging.info(f"[MTAFE] [Constructor] Using {audio_feeder_threads} threads for preprocessing audio and {feature_extractor_threads} threads for feature extraction. Max queue size of {max_audio_in_queue} files")
logging.info(f"[MTAFE] [Constructor] Initializing PANNs")
logging.info(f"[MTAFE] [Constructor] Inferencing with batch size {batch_size}")
self.__at = AudioTagging(checkpoint_path=None, device='cuda')
self.__batch_size = batch_size
def __chunks(self, lst, n):
# Stolen straight from Stackoverflow
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
def __audio_inference_embedding(self, audio: list[tuple[np.ndarray, float, int]]) -> list[tuple[np.ndarray, float, int]]:
audio_chunk_list = []
timepos_list = []
channel_id_list = []
embedding_list = []
# Split into equal sized list
for audio_chunk, timepos, channel in audio:
audio_chunk_list.append(audio_chunk)
timepos_list.append(timepos)
channel_id_list.append(channel)
# Convert audio_chunk_list into numpy array
audio_chunk_list = np.array(audio_chunk_list)
#logging.info("[MTAFE] [PANNs] Inferencing...")
try:
for i, batch in enumerate(self.__chunks(audio_chunk_list, self.__batch_size)):
(clipwise_output, embedding) = self.__at.inference(batch)
for vect in embedding: # vect: np.ndarray
embedding_list.append(vect)
logging.info(f"[MTAFE] [PANNs] Inferenced batch {i}")
assert len(audio_chunk_list) == len(timepos_list) == len(channel_id_list) == len(embedding_list)
except Exception as e:
logging.critical("[MTAFE] [PANNs] ERROR! INFERENCE FAILED!!! OR LIST SIZE MISMATCH")
logging.critical(e)
embedding_list = [None for _ in audio_chunk_list] # Clearing embedding_list and filling it with None
return list(zip(embedding_list, channel_id_list, embedding_list))
def __audio_feeder_thread(self, thread_id):
while (not self.__audio_paths_list.empty()):
new_audio_path = self.__audio_paths_list.get()
self.__audio_paths_list.task_done()
logging.info(f"[MTAFE] [Audio Feeder {thread_id}] Preprocess: {new_audio_path.absolute()}")
new_audio = audiopreprocessing.load_preprocessed_audio(
new_audio_path,
self.__desired_sr,
self.__mono,
self.__chunk_length,
self.__overlap
)
self.__audio_queue.put((new_audio, new_audio_path))
logging.info(f"[MTAFE] [Audio Feeder {thread_id}] Feed: {new_audio_path.absolute()}")
logging.info(f"[MTAFE] [Audio Feeder {thread_id}] Thread finished!")
def __check_all_audiofeed_thread_finished(self) -> bool:
for ft in self.__audio_loader_threadpool:
if ft.running():
return False
return True
def __check_all_featureextractor_thread_finished(self) -> bool:
for ft in self.__feature_extractor_threadpool:
if ft.running():
return False
return True
def __feature_extractor_thread(self, thread_id):
while (not self.__check_all_audiofeed_thread_finished() or not self.__audio_queue.empty()):
if (not self.__audio_queue.empty()):
audio_to_process, audio_path = self.__audio_queue.get()
self.__audio_queue.task_done()
logging.info(f"[MTAFE] [Feature Extractor {thread_id}] Extracting: {audio_path}")
features_to_add = self.__audio_inference_embedding(audio_to_process)
logging.info(f"[MTAFE] [Feature Extractor {thread_id}] Extracted: {len(features_to_add)} features")
with self.__features_lock:
self.__features[audio_path] = features_to_add
logging.info(f"[MTAFE] [Feature Extractor {thread_id}] Feature Extraction complete for {audio_path} w/ {len(features_to_add)} features")
logging.info(f"[MTAFE] [Feature Extractor {thread_id}] Thread finished!")
def __count_running_threads(self) -> tuple[int, int]:
running_extractors = 0
running_feeders = 0
for ft in self.__feature_extractor_threadpool:
if ft.running(): running_extractors += 1
for ft in self.__audio_loader_threadpool:
if ft.running(): running_feeders += 1
return (running_feeders, running_extractors)
@property
def features(self) -> dict[Path, list[tuple[np.ndarray, float, int]]]:
return self.__features
def extract(self):
total_amount = self.__audio_paths_list.qsize()
logging.info(f"[MTAFE] [Main] Starting feature extraction for {total_amount} file(s)")
t_start = time.perf_counter()
with concurrent.futures.ThreadPoolExecutor(max_workers=(self.__audio_loader_threads + self.__feature_extractor_threads)) as executor:
for i in range(self.__audio_loader_threads):
ld_ft = executor.submit(self.__audio_feeder_thread, i)
self.__audio_loader_threadpool.append(ld_ft)
for i in range(self.__feature_extractor_threads):
ld_ft = executor.submit(self.__feature_extractor_thread, i)
self.__feature_extractor_threadpool.append(ld_ft)
while ( (not self.__check_all_audiofeed_thread_finished()) and (not self.__check_all_featureextractor_thread_finished()) ):
nfeeder, nextract = self.__count_running_threads()
print(f"[MTAFE Progress] Processed {len(self.__features)}/{total_amount} (L:{self.__audio_queue.qsize()}/W:{self.__audio_paths_list.qsize()}, LD:{nfeeder}/EXT:{nextract})", end="\r")
t_stop = time.perf_counter()
logging.info(f"[MTAFE] Processed {len(self.__features)}/{total_amount} (L:{self.__audio_queue.qsize()}/W:{self.__audio_paths_list.qsize()} COMPLETE)")
delta_t = t_stop - t_start
total_features = sum( [len(self.__features[path]) for path in self.__features] )
logging.info(f"[MTAFE] Extraction complete. Took {delta_t} seconds. Added {total_features} vectors/embeddings")