processing framework
This commit is contained in:
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -3,18 +3,31 @@ import pickle
|
|||||||
import os
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
import logging
|
||||||
|
|
||||||
DEBUG=True
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
def triggerlog():
|
||||||
|
logger.critical("Testing: info")
|
||||||
|
|
||||||
def resample_load(input_path : Path, target_sr : int = 16000, mono_audio : bool = False) -> np.ndarray: # AI
|
def resample_load(input_path : Path, target_sr : int = 16000, mono_audio : bool = False) -> np.ndarray: # AI
|
||||||
"""Resample audio to target sample rate and save to output directory"""
|
"""Load and resamples the audio into `target_sr`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_path (Path): pathlib.Path object to audio file
|
||||||
|
target_sr (int, optional): Target Sample Rate to resample. Defaults to 16000.
|
||||||
|
mono_audio (bool, optional): Load the audio in mono mode. Defaults to False.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
np.ndarray: _description_
|
||||||
|
"""
|
||||||
# Load audio file with original sample rate
|
# Load audio file with original sample rate
|
||||||
if DEBUG: print("[resample_load] Loading audio", input_path)
|
logger.info(f"[resample_load] Loading audio {input_path}")
|
||||||
audio, orig_sr = librosa.load(input_path, sr=None, mono=mono_audio)
|
audio, orig_sr = librosa.load(input_path, sr=None, mono=mono_audio)
|
||||||
|
|
||||||
# Resample if necessary
|
# Resample if necessary
|
||||||
if orig_sr != target_sr:
|
if orig_sr != target_sr:
|
||||||
if DEBUG: print("[resample_load] Resampling to", target_sr)
|
logger.info(f"[resample_load] Resampling to {target_sr}")
|
||||||
audio = librosa.resample(audio, orig_sr=orig_sr, target_sr=target_sr)
|
audio = librosa.resample(audio, orig_sr=orig_sr, target_sr=target_sr)
|
||||||
|
|
||||||
return audio
|
return audio
|
||||||
@@ -24,7 +37,7 @@ def chunk_audio(audio : np.ndarray, sr: int, chunk_length: float = 10.0, overlap
|
|||||||
Chunks audio file into overlapping segments. Only pass in mono audio here.
|
Chunks audio file into overlapping segments. Only pass in mono audio here.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
audio_file: Loaded audio ndarray
|
audio_file: Loaded audio ndarray (one channel only)
|
||||||
sr: Sample rate for the given audio file
|
sr: Sample rate for the given audio file
|
||||||
chunk_length: Length of each chunk in seconds
|
chunk_length: Length of each chunk in seconds
|
||||||
overlap: Overlap between chunks in seconds
|
overlap: Overlap between chunks in seconds
|
||||||
@@ -32,7 +45,7 @@ def chunk_audio(audio : np.ndarray, sr: int, chunk_length: float = 10.0, overlap
|
|||||||
Returns:
|
Returns:
|
||||||
List of audio chunks, list of chunk positions, and given sample rate
|
List of audio chunks, list of chunk positions, and given sample rate
|
||||||
"""
|
"""
|
||||||
if DEBUG: print("[chunk_audio] Chunking audio")
|
logger.info(f"[chunk_audio] Chunking audio ({len(audio) / sr}s)")
|
||||||
# Calculate chunk size and hop length in samples
|
# Calculate chunk size and hop length in samples
|
||||||
chunk_size = int(chunk_length * sr)
|
chunk_size = int(chunk_length * sr)
|
||||||
hop_length = int((chunk_length - overlap) * sr)
|
hop_length = int((chunk_length - overlap) * sr)
|
||||||
@@ -46,10 +59,12 @@ def chunk_audio(audio : np.ndarray, sr: int, chunk_length: float = 10.0, overlap
|
|||||||
chunks.append(chunk)
|
chunks.append(chunk)
|
||||||
positions.append(i / sr)
|
positions.append(i / sr)
|
||||||
k += 1
|
k += 1
|
||||||
if DEBUG: print("[chunk_audio] Chunked", k, end="\r")
|
|
||||||
if k == 0: # The full audio length is less than chunk_length
|
if k == 0: # The full audio length is less than chunk_length
|
||||||
chunks = [audio]
|
chunks = [audio]
|
||||||
positions = [0.0]
|
positions = [0.0]
|
||||||
|
logger.info(f"[chunk_audio] Audio less than chunk_length. Returning original audio as chunk\r")
|
||||||
|
else:
|
||||||
|
logger.info(f"[chunk_audio] Audio is split into {k} chunks")
|
||||||
|
|
||||||
return chunks, positions, sr
|
return chunks, positions, sr
|
||||||
|
|
||||||
|
|||||||
@@ -8,8 +8,8 @@ import concurrent.futures
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import audiopreprocessing
|
import audiopreprocessing
|
||||||
|
import logging
|
||||||
DEBUG=True
|
import queue
|
||||||
|
|
||||||
def serialize_dict_obj(path : Path, object : dict) -> int:
|
def serialize_dict_obj(path : Path, object : dict) -> int:
|
||||||
"""Serializes Python Dictionary object to a file via Pickle.
|
"""Serializes Python Dictionary object to a file via Pickle.
|
||||||
@@ -27,7 +27,7 @@ def serialize_dict_obj(path : Path, object : dict) -> int:
|
|||||||
size = fp.tell()
|
size = fp.tell()
|
||||||
return size
|
return size
|
||||||
|
|
||||||
print("Reading local dataset directory structure...")
|
logging.info("Reading local dataset directory structure...")
|
||||||
|
|
||||||
ASMRThreePath = Path("C:\\ASMRThree")
|
ASMRThreePath = Path("C:\\ASMRThree")
|
||||||
ASMRTwoPath = Path("D:\\ASMRTwo")
|
ASMRTwoPath = Path("D:\\ASMRTwo")
|
||||||
@@ -149,7 +149,7 @@ class AudioFeatureExtractor():
|
|||||||
__mono: bool
|
__mono: bool
|
||||||
__chunk_length: float
|
__chunk_length: float
|
||||||
__overlap: float
|
__overlap: float
|
||||||
__features: dict[Path, list[tuple[np.ndarray, float, int]]]
|
__features: dict[Path, list[tuple[np.ndarray, float, int]]] # This is a crime, I know
|
||||||
# { audioPath:
|
# { audioPath:
|
||||||
# [(embedding, pos, channel)...]
|
# [(embedding, pos, channel)...]
|
||||||
# }
|
# }
|
||||||
@@ -184,7 +184,7 @@ class AudioFeatureExtractor():
|
|||||||
"""
|
"""
|
||||||
while (self.__audio_paths_list): # While there are still Path elements in path list
|
while (self.__audio_paths_list): # While there are still Path elements in path list
|
||||||
if (not (len(self.__audio_queue) < self.__max_audio_in_queue)):
|
if (not (len(self.__audio_queue) < self.__max_audio_in_queue)):
|
||||||
if DEBUG: print("Audio Queue Thread: Queue Full, feeder thread sleeping for 5 seconds")
|
logging.info("[AFE] [Audio Queue Thread]: Queue Full, feeder thread sleeping for 5 seconds")
|
||||||
time.sleep(5)
|
time.sleep(5)
|
||||||
while(len(self.__audio_queue) < self.__max_audio_in_queue): # While the audio queue is not full
|
while(len(self.__audio_queue) < self.__max_audio_in_queue): # While the audio queue is not full
|
||||||
new_audio_path = self.__audio_paths_list[0]
|
new_audio_path = self.__audio_paths_list[0]
|
||||||
@@ -200,8 +200,8 @@ class AudioFeatureExtractor():
|
|||||||
(new_audio, new_audio_path)
|
(new_audio, new_audio_path)
|
||||||
)
|
)
|
||||||
pop_path = self.__audio_paths_list.pop(0)
|
pop_path = self.__audio_paths_list.pop(0)
|
||||||
if DEBUG: print("Audio Queue Thread: Added new audio to queue", pop_path)
|
logging.info(f"[AFE] [Audio Queue Thread]: Added new audio to queue {pop_path}")
|
||||||
if DEBUG: print("Audio Queue Thread: DONE. All audio files fed")
|
logging.info("[AFE] [Audio Queue Thread]: DONE. All audio files fed")
|
||||||
|
|
||||||
def __audio_queue_feature_extractor(self):
|
def __audio_queue_feature_extractor(self):
|
||||||
"""Internal thread function. Get audio from audio queue. And extract embedding vector
|
"""Internal thread function. Get audio from audio queue. And extract embedding vector
|
||||||
@@ -212,7 +212,7 @@ class AudioFeatureExtractor():
|
|||||||
if (self.__audio_queue): # If audio queue is not empty
|
if (self.__audio_queue): # If audio queue is not empty
|
||||||
with self.__queue_lock:
|
with self.__queue_lock:
|
||||||
audio_to_process, audio_path = self.__audio_queue.pop(0) # Get audio from queue
|
audio_to_process, audio_path = self.__audio_queue.pop(0) # Get audio from queue
|
||||||
if DEBUG: print(f"Feature Extractor Thread: Extracting {len(audio_to_process)} features from audio", audio_path)
|
logging.info(f"[AFE] [Feature Extractor Thread]: Extracting {len(audio_to_process)} features from audio {audio_path}")
|
||||||
for audio_chunk in audio_to_process:
|
for audio_chunk in audio_to_process:
|
||||||
same_audio_chunk, timepos, channel_id, embedd_vect = self.__embedding_extract(audio_chunk)
|
same_audio_chunk, timepos, channel_id, embedd_vect = self.__embedding_extract(audio_chunk)
|
||||||
if (audio_path not in self.__features.keys()):
|
if (audio_path not in self.__features.keys()):
|
||||||
@@ -224,9 +224,9 @@ class AudioFeatureExtractor():
|
|||||||
(embedd_vect, timepos, channel_id)
|
(embedd_vect, timepos, channel_id)
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
if DEBUG: print("Feature Extractor Thread: Queue Empty, extractor thread sleeping for 5 seconds") # If audio queue is empty, wait
|
logging.info("[AFE] [Feature Extractor Thread]: Queue Empty, extractor thread sleeping for 5 seconds") # If audio queue is empty, wait
|
||||||
time.sleep(5)
|
time.sleep(5)
|
||||||
if DEBUG: print("Feature Extractor Thread: DONE. Extracted all features from all audio files")
|
logging.info("[AFE] [Feature Extractor Thread]: DONE. Extracted all features from all audio files")
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
@@ -270,3 +270,202 @@ class AudioFeatureExtractor():
|
|||||||
print("Extraction completed")
|
print("Extraction completed")
|
||||||
print(f"Took {delta_t} seconds. Added {total_features} vectors/embeddings")
|
print(f"Took {delta_t} seconds. Added {total_features} vectors/embeddings")
|
||||||
|
|
||||||
|
class MultiThreadedAudioFeatureExtractor():
|
||||||
|
__audio_queue: queue.Queue[ # List of ...
|
||||||
|
tuple[ # Pair of chunked audio and its path
|
||||||
|
list[tuple[np.ndarray, float, int]], # Chunked audio
|
||||||
|
Path # Path to original audio
|
||||||
|
]
|
||||||
|
] # Listed of Chunked/Resampled audio
|
||||||
|
__audio_loader_threads: int # Amount of audio feeder threads
|
||||||
|
__feature_extractor_threads: int # Amount of feature extractor threads (if the method allows)
|
||||||
|
__audio_paths_list: queue.Queue[Path] # Path list to audio
|
||||||
|
__max_audio_in_queue: int # Maximum audio in queue
|
||||||
|
# Audio Feeeder parameter
|
||||||
|
__desired_sr: int # Desired Sample Rate (Resampling)
|
||||||
|
__mono: bool # Force load audio in mono mode
|
||||||
|
__chunk_length: float # Audio chunk length
|
||||||
|
__overlap: float
|
||||||
|
# Result
|
||||||
|
__features: dict[Path, list[tuple[np.ndarray, float, int]]] # This is a crime, I know
|
||||||
|
__features_lock: threading.Lock
|
||||||
|
# __features: { audioPath:
|
||||||
|
# [(embedding1, pos1, channel1),
|
||||||
|
# (embedding2, pos2, channel1)]
|
||||||
|
# ...
|
||||||
|
# }
|
||||||
|
# Runtime
|
||||||
|
__audio_loader_threadpool: list[concurrent.futures.Future]
|
||||||
|
__feature_extractor_threadpool: list[concurrent.futures.Future]
|
||||||
|
__audio_feed_condition: threading.Condition
|
||||||
|
|
||||||
|
def __audio_inference_embedding(self, audio: list[tuple[np.ndarray, float, int]]) -> list[tuple[np.ndarray, float, int]]:
|
||||||
|
"""Receives a list of audio chunks, and then extracts embeddings for all audio chunks, returns the resulting embedding as a list of tuples(embedding, time, channel_id)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
audio (list[tuple[np.ndarray, float, int]]): list of audio chunks
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list[tuple[np.ndarray, float, int]]: List of (embedding vector, timepos, channel id)
|
||||||
|
"""
|
||||||
|
features = []
|
||||||
|
for audio_chunk in audio:
|
||||||
|
audio, timepos, channel_id = audio_chunk
|
||||||
|
zero = np.zeros(32)
|
||||||
|
features.append( (zero, timepos, channel_id) )
|
||||||
|
time.sleep(0.01)
|
||||||
|
return features
|
||||||
|
# To be overridden
|
||||||
|
|
||||||
|
def __audio_feeder_thread(self, thread_id):
|
||||||
|
# If there is still audio in paths list
|
||||||
|
# Is the audio queue not full?
|
||||||
|
while (not self.__audio_paths_list.empty()):
|
||||||
|
if (not self.__audio_queue.full()):
|
||||||
|
# Feed audio
|
||||||
|
new_audio_path = self.__audio_paths_list.get()
|
||||||
|
self.__audio_paths_list.task_done()
|
||||||
|
logging.info(f"[MTAFE] [Audio Feeder {thread_id}] Preprocess: {new_audio_path.absolute()}")
|
||||||
|
new_audio = audiopreprocessing.load_preprocessed_audio(
|
||||||
|
new_audio_path,
|
||||||
|
self.__desired_sr,
|
||||||
|
self.__mono,
|
||||||
|
self.__chunk_length,
|
||||||
|
self.__overlap
|
||||||
|
)
|
||||||
|
self.__audio_queue.put((new_audio, new_audio_path))
|
||||||
|
#self.__audio_queue.task_done()
|
||||||
|
#with self.__audio_feed_condition: self.__audio_feed_condition.notify_all()
|
||||||
|
logging.info(f"[MTAFE] [Audio Feeder {thread_id}] Feed: {new_audio_path.absolute()}")
|
||||||
|
#else:
|
||||||
|
# logging.info(f"[MTAFE] [Audio Feeder {thread_id}] Audio queue full ({self.__audio_queue.qsize()} <= {self.__max_audio_in_queue} FALSE): waiting")
|
||||||
|
# with self.__audio_feed_condition:
|
||||||
|
# logging.info(f"[MTAFE] [Audio Feeder {thread_id}] Audio queue full: waiting")
|
||||||
|
# self.__audio_feed_condition.wait_for(lambda: not self.__audio_queue.qsize() <= self.__max_audio_in_queue) # This consumes way too much CPU power
|
||||||
|
# self.__audio_feed_condition.wait(10)
|
||||||
|
logging.info(f"[MTAFE] [Audio Feeder {thread_id}] Thread finished!")
|
||||||
|
|
||||||
|
#def testfeedthread(self, nthreads):
|
||||||
|
# t1 = threading.Thread(target=self.__audio_feeder_thread, args=(1,))
|
||||||
|
# t2 = threading.Thread(target=self.__audio_feeder_thread, args=(2,))
|
||||||
|
# t1.start(); t2.start()
|
||||||
|
# #with self.__audio_feed_condition:
|
||||||
|
# # self.__audio_feed_condition.notify_all()
|
||||||
|
# t1.join(); t2.join()
|
||||||
|
# with concurrent.futures.ThreadPoolExecutor(max_workers=nthreads) as executor:
|
||||||
|
# for i in range(nthreads):
|
||||||
|
# ft = executor.submit(self.__audio_feeder_thread, i)
|
||||||
|
# self.__audio_loader_threadpool.append(ft)
|
||||||
|
|
||||||
|
def __check_all_audiofeed_thread_finished(self) -> bool:
|
||||||
|
for ft in self.__audio_loader_threadpool:
|
||||||
|
if ft.running():
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
def __check_all_featureextractor_thread_finished(self) -> bool:
|
||||||
|
for ft in self.__feature_extractor_threadpool:
|
||||||
|
if ft.running():
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
def __feature_extractor_thread(self, thread_id):
|
||||||
|
while (not self.__check_all_audiofeed_thread_finished() or not self.__audio_queue.empty()):
|
||||||
|
if (not self.__audio_queue.empty()):
|
||||||
|
audio_to_process, audio_path = self.__audio_queue.get()
|
||||||
|
self.__audio_queue.task_done()
|
||||||
|
logging.info(f"[MTAFE] [Feature Extractor {thread_id}] Extracting: {audio_path}")
|
||||||
|
features_to_add = self.__audio_inference_embedding(audio_to_process)
|
||||||
|
logging.info(f"[MTAFE] [Feature Extractor {thread_id}] Extracted: {len(features_to_add)} features")
|
||||||
|
with self.__features_lock:
|
||||||
|
self.__features[audio_path] = features_to_add
|
||||||
|
#with self.__audio_feed_condition: self.__audio_feed_condition.notify_all()
|
||||||
|
logging.info(f"[MTAFE] [Feature Extractor {thread_id}] Feature Extraction complete for {audio_path} w/ {len(features_to_add)} features")
|
||||||
|
#else:
|
||||||
|
# if (not self.__check_all_audiofeed_thread_finished()):
|
||||||
|
# with self.__audio_feed_condition:
|
||||||
|
# logging.info(f"[MTAFE] [Feature Extractor {thread_id}] Audio queue empty: waiting")
|
||||||
|
# self.__audio_feed_condition.wait(10)
|
||||||
|
# self.__audio_feed_condition.wait_for(lambda: not self.__audio_queue.empty())
|
||||||
|
|
||||||
|
logging.info(f"[MTAFE] [Feature Extractor {thread_id}] Thread finished!")
|
||||||
|
|
||||||
|
def __count_running_threads(self) -> tuple[int, int]:
|
||||||
|
running_extractors = 0
|
||||||
|
running_feeders = 0
|
||||||
|
for ft in self.__feature_extractor_threadpool:
|
||||||
|
if ft.running(): running_extractors += 1
|
||||||
|
for ft in self.__audio_loader_threadpool:
|
||||||
|
if ft.running(): running_feeders += 1
|
||||||
|
return (running_feeders, running_extractors)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def features(self) -> dict[Path, list[tuple[np.ndarray, float, int]]]:
|
||||||
|
return self.__features
|
||||||
|
|
||||||
|
def extract(self):
|
||||||
|
total_amount = self.__audio_paths_list.qsize()
|
||||||
|
logging.info(f"[MTAFE] [Main] Starting feature extraction for {total_amount} file(s)")
|
||||||
|
t_start = time.perf_counter()
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=(self.__audio_loader_threads + self.__feature_extractor_threads)) as executor:
|
||||||
|
for i in range(self.__audio_loader_threads):
|
||||||
|
ld_ft = executor.submit(self.__audio_feeder_thread, i)
|
||||||
|
self.__audio_loader_threadpool.append(ld_ft)
|
||||||
|
for i in range(self.__feature_extractor_threads):
|
||||||
|
ld_ft = executor.submit(self.__feature_extractor_thread, i)
|
||||||
|
self.__feature_extractor_threadpool.append(ld_ft)
|
||||||
|
while ( (not self.__check_all_audiofeed_thread_finished()) and (not self.__check_all_featureextractor_thread_finished()) ):
|
||||||
|
nfeeder, nextract = self.__count_running_threads()
|
||||||
|
print(f"[MTAFE Progress] Processed {len(self.__features)}/{total_amount} (L:{self.__audio_queue.qsize()}/W:{self.__audio_paths_list.qsize()}, LD:{nfeeder}/EXT:{nextract})", end="\r")
|
||||||
|
t_stop = time.perf_counter()
|
||||||
|
logging.info(f"[MTAFE] Processed {len(self.__features)}/{total_amount} (L:{self.__audio_queue.qsize()}/W:{self.__audio_paths_list.qsize()} COMPLETE)")
|
||||||
|
delta_t = t_stop - t_start
|
||||||
|
total_features = sum( [len(self.__features[path]) for path in self.__features] )
|
||||||
|
logging.info(f"[MTAFE] Extraction complete. Took {delta_t} seconds. Added {total_features} vectors/embeddings")
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
audio_paths: list[Path],
|
||||||
|
max_audio_in_queue: int = 16,
|
||||||
|
audio_feeder_threads: int = 8,
|
||||||
|
feature_extractor_threads: int = 8,
|
||||||
|
desired_sr: int = 32000,
|
||||||
|
force_mono: bool = False,
|
||||||
|
chunk_length: float = 15.0,
|
||||||
|
chunk_overlap: float = 2.0,
|
||||||
|
):
|
||||||
|
# Check if the paths passed in are all valid and add them to queue
|
||||||
|
self.__audio_paths_list = queue.Queue()
|
||||||
|
for p in audio_paths:
|
||||||
|
if not p.is_file():
|
||||||
|
raise Exception(f"Path '{p.absolute()}' is NOT a valid file!")
|
||||||
|
else:
|
||||||
|
self.__audio_paths_list.put(p)
|
||||||
|
#self.__audio_paths_list.task_done()
|
||||||
|
|
||||||
|
logging.info(f"[MTAFE] [Constructor] Queued {self.__audio_paths_list.qsize()} files")
|
||||||
|
|
||||||
|
# Set up private attributes
|
||||||
|
## Audio preprocessing parameters
|
||||||
|
self.__desired_sr = desired_sr
|
||||||
|
self.__mono = force_mono
|
||||||
|
self.__chunk_length = chunk_length
|
||||||
|
self.__overlap = chunk_overlap
|
||||||
|
|
||||||
|
## Extractor/Feeder settings
|
||||||
|
self.__max_audio_in_queue = max_audio_in_queue
|
||||||
|
self.__audio_loader_threads = audio_feeder_threads
|
||||||
|
self.__feature_extractor_threads = feature_extractor_threads
|
||||||
|
|
||||||
|
## Set up runtime conditions
|
||||||
|
self.__audio_queue = queue.Queue()
|
||||||
|
self.__features = {}
|
||||||
|
self.__features_lock = threading.Lock()
|
||||||
|
self.__audio_loader_threadpool = []
|
||||||
|
self.__feature_extractor_threadpool = []
|
||||||
|
self.__audio_feed_condition = threading.Condition()
|
||||||
|
|
||||||
|
logging.info(f"[MTAFE] [Constructor] Extraction parameters: {desired_sr}Hz, Mono: {force_mono}, Divide into {chunk_length}s chunks with {chunk_overlap}s of overlap")
|
||||||
|
logging.info(f"[MTAFE] [Constructor] Using {audio_feeder_threads} threads for preprocessing audio and {feature_extractor_threads} threads for feature extraction. Max queue size of {max_audio_in_queue} files")
|
||||||
|
|
||||||
|
# More audio embeddings specific code below (To be overridden)
|
||||||
193
FeatureExtraction/mtafe_panns.py
Normal file
193
FeatureExtraction/mtafe_panns.py
Normal file
@@ -0,0 +1,193 @@
|
|||||||
|
from dataset_files import MultiThreadedAudioFeatureExtractor
|
||||||
|
from pathlib import Path
|
||||||
|
from panns_inference import AudioTagging
|
||||||
|
import logging
|
||||||
|
import numpy as np
|
||||||
|
import queue
|
||||||
|
import concurrent.futures
|
||||||
|
import threading
|
||||||
|
import time
|
||||||
|
import audiopreprocessing
|
||||||
|
#import torch
|
||||||
|
#import gc
|
||||||
|
|
||||||
|
class mtafe_panns():
|
||||||
|
__audio_queue: queue.Queue[ # List of ...
|
||||||
|
tuple[ # Pair of chunked audio and its path
|
||||||
|
list[tuple[np.ndarray, float, int]], # Chunked audio
|
||||||
|
Path # Path to original audio
|
||||||
|
]
|
||||||
|
] # Listed of Chunked/Resampled audio
|
||||||
|
__audio_loader_threads: int # Amount of audio feeder threads
|
||||||
|
__feature_extractor_threads: int # Amount of feature extractor threads (if the method allows)
|
||||||
|
__audio_paths_list: queue.Queue[Path] # Path list to audio
|
||||||
|
__max_audio_in_queue: int # Maximum audio in queue
|
||||||
|
__desired_sr: int
|
||||||
|
__mono: bool
|
||||||
|
__chunk_length: float
|
||||||
|
__overlap: float
|
||||||
|
__features: dict[Path, list[tuple[np.ndarray, float, int]]] # This is a crime, I know
|
||||||
|
__features_lock: threading.Lock
|
||||||
|
__audio_loader_threadpool: list[concurrent.futures.Future]
|
||||||
|
__feature_extractor_threadpool: list[concurrent.futures.Future]
|
||||||
|
__at: AudioTagging
|
||||||
|
__batch_size: int
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
audio_paths: list[Path],
|
||||||
|
max_audio_in_queue: int = 16,
|
||||||
|
audio_feeder_threads: int = 8,
|
||||||
|
feature_extractor_threads: int = 8,
|
||||||
|
desired_sr: int = 32000,
|
||||||
|
force_mono: bool = False,
|
||||||
|
chunk_length: float = 15.0,
|
||||||
|
chunk_overlap: float = 2.0,
|
||||||
|
batch_size: int = 20
|
||||||
|
):
|
||||||
|
# Check if the paths passed in are all valid and add them to queue
|
||||||
|
self.__audio_paths_list = queue.Queue()
|
||||||
|
for p in audio_paths:
|
||||||
|
if not p.is_file():
|
||||||
|
raise Exception(f"Path '{p.absolute()}' is NOT a valid file!")
|
||||||
|
else:
|
||||||
|
self.__audio_paths_list.put(p)
|
||||||
|
#self.__audio_paths_list.task_done()
|
||||||
|
|
||||||
|
logging.info(f"[MTAFE] [Constructor] Queued {self.__audio_paths_list.qsize()} files")
|
||||||
|
|
||||||
|
# Set up private attributes
|
||||||
|
## Audio preprocessing parameters
|
||||||
|
self.__desired_sr = desired_sr
|
||||||
|
self.__mono = force_mono
|
||||||
|
self.__chunk_length = chunk_length
|
||||||
|
self.__overlap = chunk_overlap
|
||||||
|
|
||||||
|
## Extractor/Feeder settings
|
||||||
|
self.__max_audio_in_queue = max_audio_in_queue
|
||||||
|
self.__audio_loader_threads = audio_feeder_threads
|
||||||
|
self.__feature_extractor_threads = feature_extractor_threads
|
||||||
|
|
||||||
|
## Set up runtime conditions
|
||||||
|
self.__audio_queue = queue.Queue(maxsize=max_audio_in_queue)
|
||||||
|
self.__features = {}
|
||||||
|
self.__features_lock = threading.Lock()
|
||||||
|
self.__audio_loader_threadpool = []
|
||||||
|
self.__feature_extractor_threadpool = []
|
||||||
|
|
||||||
|
logging.info(f"[MTAFE] [Constructor] Extraction parameters: {desired_sr}Hz, Mono: {force_mono}, Divide into {chunk_length}s chunks with {chunk_overlap}s of overlap")
|
||||||
|
logging.info(f"[MTAFE] [Constructor] Using {audio_feeder_threads} threads for preprocessing audio and {feature_extractor_threads} threads for feature extraction. Max queue size of {max_audio_in_queue} files")
|
||||||
|
|
||||||
|
logging.info(f"[MTAFE] [Constructor] Initializing PANNs")
|
||||||
|
logging.info(f"[MTAFE] [Constructor] Inferencing with batch size {batch_size}")
|
||||||
|
self.__at = AudioTagging(checkpoint_path=None, device='cuda')
|
||||||
|
self.__batch_size = batch_size
|
||||||
|
|
||||||
|
def __chunks(self, lst, n):
|
||||||
|
# Stolen straight from Stackoverflow
|
||||||
|
"""Yield successive n-sized chunks from lst."""
|
||||||
|
for i in range(0, len(lst), n):
|
||||||
|
yield lst[i:i + n]
|
||||||
|
|
||||||
|
def __audio_inference_embedding(self, audio: list[tuple[np.ndarray, float, int]]) -> list[tuple[np.ndarray, float, int]]:
|
||||||
|
audio_chunk_list = []
|
||||||
|
timepos_list = []
|
||||||
|
channel_id_list = []
|
||||||
|
embedding_list = []
|
||||||
|
|
||||||
|
# Split into equal sized list
|
||||||
|
for audio_chunk, timepos, channel in audio:
|
||||||
|
audio_chunk_list.append(audio_chunk)
|
||||||
|
timepos_list.append(timepos)
|
||||||
|
channel_id_list.append(channel)
|
||||||
|
|
||||||
|
# Convert audio_chunk_list into numpy array
|
||||||
|
audio_chunk_list = np.array(audio_chunk_list)
|
||||||
|
|
||||||
|
#logging.info("[MTAFE] [PANNs] Inferencing...")
|
||||||
|
try:
|
||||||
|
for i, batch in enumerate(self.__chunks(audio_chunk_list, self.__batch_size)):
|
||||||
|
(clipwise_output, embedding) = self.__at.inference(batch)
|
||||||
|
for vect in embedding: # vect: np.ndarray
|
||||||
|
embedding_list.append(vect)
|
||||||
|
logging.info(f"[MTAFE] [PANNs] Inferenced batch {i}")
|
||||||
|
|
||||||
|
assert len(audio_chunk_list) == len(timepos_list) == len(channel_id_list) == len(embedding_list)
|
||||||
|
except Exception as e:
|
||||||
|
logging.critical("[MTAFE] [PANNs] ERROR! INFERENCE FAILED!!! OR LIST SIZE MISMATCH")
|
||||||
|
logging.critical(e)
|
||||||
|
embedding_list = [None for _ in audio_chunk_list] # Clearing embedding_list and filling it with None
|
||||||
|
return list(zip(embedding_list, channel_id_list, embedding_list))
|
||||||
|
|
||||||
|
def __audio_feeder_thread(self, thread_id):
|
||||||
|
while (not self.__audio_paths_list.empty()):
|
||||||
|
new_audio_path = self.__audio_paths_list.get()
|
||||||
|
self.__audio_paths_list.task_done()
|
||||||
|
logging.info(f"[MTAFE] [Audio Feeder {thread_id}] Preprocess: {new_audio_path.absolute()}")
|
||||||
|
new_audio = audiopreprocessing.load_preprocessed_audio(
|
||||||
|
new_audio_path,
|
||||||
|
self.__desired_sr,
|
||||||
|
self.__mono,
|
||||||
|
self.__chunk_length,
|
||||||
|
self.__overlap
|
||||||
|
)
|
||||||
|
self.__audio_queue.put((new_audio, new_audio_path))
|
||||||
|
logging.info(f"[MTAFE] [Audio Feeder {thread_id}] Feed: {new_audio_path.absolute()}")
|
||||||
|
logging.info(f"[MTAFE] [Audio Feeder {thread_id}] Thread finished!")
|
||||||
|
|
||||||
|
def __check_all_audiofeed_thread_finished(self) -> bool:
|
||||||
|
for ft in self.__audio_loader_threadpool:
|
||||||
|
if ft.running():
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
def __check_all_featureextractor_thread_finished(self) -> bool:
|
||||||
|
for ft in self.__feature_extractor_threadpool:
|
||||||
|
if ft.running():
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
def __feature_extractor_thread(self, thread_id):
|
||||||
|
while (not self.__check_all_audiofeed_thread_finished() or not self.__audio_queue.empty()):
|
||||||
|
if (not self.__audio_queue.empty()):
|
||||||
|
audio_to_process, audio_path = self.__audio_queue.get()
|
||||||
|
self.__audio_queue.task_done()
|
||||||
|
logging.info(f"[MTAFE] [Feature Extractor {thread_id}] Extracting: {audio_path}")
|
||||||
|
features_to_add = self.__audio_inference_embedding(audio_to_process)
|
||||||
|
logging.info(f"[MTAFE] [Feature Extractor {thread_id}] Extracted: {len(features_to_add)} features")
|
||||||
|
with self.__features_lock:
|
||||||
|
self.__features[audio_path] = features_to_add
|
||||||
|
logging.info(f"[MTAFE] [Feature Extractor {thread_id}] Feature Extraction complete for {audio_path} w/ {len(features_to_add)} features")
|
||||||
|
logging.info(f"[MTAFE] [Feature Extractor {thread_id}] Thread finished!")
|
||||||
|
|
||||||
|
def __count_running_threads(self) -> tuple[int, int]:
|
||||||
|
running_extractors = 0
|
||||||
|
running_feeders = 0
|
||||||
|
for ft in self.__feature_extractor_threadpool:
|
||||||
|
if ft.running(): running_extractors += 1
|
||||||
|
for ft in self.__audio_loader_threadpool:
|
||||||
|
if ft.running(): running_feeders += 1
|
||||||
|
return (running_feeders, running_extractors)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def features(self) -> dict[Path, list[tuple[np.ndarray, float, int]]]:
|
||||||
|
return self.__features
|
||||||
|
|
||||||
|
def extract(self):
|
||||||
|
total_amount = self.__audio_paths_list.qsize()
|
||||||
|
logging.info(f"[MTAFE] [Main] Starting feature extraction for {total_amount} file(s)")
|
||||||
|
t_start = time.perf_counter()
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=(self.__audio_loader_threads + self.__feature_extractor_threads)) as executor:
|
||||||
|
for i in range(self.__audio_loader_threads):
|
||||||
|
ld_ft = executor.submit(self.__audio_feeder_thread, i)
|
||||||
|
self.__audio_loader_threadpool.append(ld_ft)
|
||||||
|
for i in range(self.__feature_extractor_threads):
|
||||||
|
ld_ft = executor.submit(self.__feature_extractor_thread, i)
|
||||||
|
self.__feature_extractor_threadpool.append(ld_ft)
|
||||||
|
while ( (not self.__check_all_audiofeed_thread_finished()) and (not self.__check_all_featureextractor_thread_finished()) ):
|
||||||
|
nfeeder, nextract = self.__count_running_threads()
|
||||||
|
print(f"[MTAFE Progress] Processed {len(self.__features)}/{total_amount} (L:{self.__audio_queue.qsize()}/W:{self.__audio_paths_list.qsize()}, LD:{nfeeder}/EXT:{nextract})", end="\r")
|
||||||
|
t_stop = time.perf_counter()
|
||||||
|
logging.info(f"[MTAFE] Processed {len(self.__features)}/{total_amount} (L:{self.__audio_queue.qsize()}/W:{self.__audio_paths_list.qsize()} COMPLETE)")
|
||||||
|
delta_t = t_stop - t_start
|
||||||
|
total_features = sum( [len(self.__features[path]) for path in self.__features] )
|
||||||
|
logging.info(f"[MTAFE] Extraction complete. Took {delta_t} seconds. Added {total_features} vectors/embeddings")
|
||||||
@@ -1,3 +1,16 @@
|
|||||||
from dataset_files import AudioFeatureExtractor, random_audio_chunk
|
import logging
|
||||||
afe = AudioFeatureExtractor(random_audio_chunk(32), 16, 32000, False)
|
from audiopreprocessing import triggerlog
|
||||||
afe.extract()
|
#logger = logging.getLogger(__name__)
|
||||||
|
logging.basicConfig(format="%(asctime)s/%(levelname)s: [%(module)s] %(message)s", level=logging.INFO)
|
||||||
|
|
||||||
|
from dataset_files import MultiThreadedAudioFeatureExtractor, random_audio_chunk
|
||||||
|
mtafe = MultiThreadedAudioFeatureExtractor(
|
||||||
|
audio_paths=random_audio_chunk(200),
|
||||||
|
max_audio_in_queue=8,
|
||||||
|
audio_feeder_threads=8,
|
||||||
|
feature_extractor_threads=1,
|
||||||
|
desired_sr=32000,
|
||||||
|
force_mono=False,
|
||||||
|
chunk_length=15,
|
||||||
|
chunk_overlap=2)
|
||||||
|
mtafe.extract()
|
||||||
|
|||||||
24
FeatureExtraction/test_panns.py
Normal file
24
FeatureExtraction/test_panns.py
Normal file
@@ -0,0 +1,24 @@
|
|||||||
|
import logging
|
||||||
|
from audiopreprocessing import triggerlog
|
||||||
|
#logger = logging.getLogger(__name__)
|
||||||
|
import sys
|
||||||
|
logging.basicConfig(format="%(asctime)s/%(levelname)s: [%(module)s] %(message)s", level=logging.INFO, handlers=[logging.FileHandler('test_panns.log'), logging.StreamHandler(sys.stdout)])
|
||||||
|
from pathlib import Path
|
||||||
|
from mtafe_panns import mtafe_panns
|
||||||
|
from dataset_files import random_audio_chunk, serialize_dict_obj
|
||||||
|
mtafe = mtafe_panns(
|
||||||
|
audio_paths=random_audio_chunk(4),
|
||||||
|
max_audio_in_queue=4,
|
||||||
|
audio_feeder_threads=4,
|
||||||
|
feature_extractor_threads=1,
|
||||||
|
desired_sr=32000,
|
||||||
|
force_mono=False,
|
||||||
|
chunk_length=15,
|
||||||
|
chunk_overlap=2,
|
||||||
|
batch_size=32
|
||||||
|
)
|
||||||
|
mtafe.extract()
|
||||||
|
|
||||||
|
print("Saving inferenced results to file...")
|
||||||
|
p = Path('./test_panns.pkl')
|
||||||
|
serialize_dict_obj(p, mtafe.features)
|
||||||
Reference in New Issue
Block a user