import logging from audiopreprocessing import triggerlog #logger = logging.getLogger(__name__) import sys logging.basicConfig(format="%(asctime)s/%(levelname)s: [%(module)s] %(message)s", level=logging.INFO, handlers=[logging.FileHandler('test_panns.log'), logging.StreamHandler(sys.stdout)]) from pathlib import Path from mtafe_panns import mtafe_panns from dataset_files import random_audio_chunk, serialize_dict_obj mtafe = mtafe_panns( audio_paths=random_audio_chunk(4), max_audio_in_queue=4, audio_feeder_threads=4, feature_extractor_threads=1, desired_sr=32000, force_mono=False, chunk_length=15, chunk_overlap=2, batch_size=32 ) mtafe.extract() print("Saving inferenced results to file...") p = Path('./test_panns.pkl') serialize_dict_obj(p, mtafe.features)